Материал предоставлен http://it.rfet.ru

Системы визуального отображения информации (видеосистемы)

Видеосистемы предназначены для оперативного отображения информации, доведения ее до сведения оператора ЭВМ. Обычно они состоят из двух частей: монитора и адаптера. Монитор служит для визуализации изображения, адаптер — для связи монитора с микропроцессорным комплектом.

Классификацию мониторов можно провести по следующим признакам: по используемым физическим эффектам, по принципу формирования изображения на экране, по способу управления, по длительности хранения информации на экране, по цветности изображения и по его эргономическим характеристикам.

По принципу формирования изображения мониторы делятся на плазменные, электролюминесцентные, жидкокристаллические и электронно-лучевые.

Плазменные, электролюминесцентные и жидкокристаллические мониторы относятся к дисплеям с плоским экраном.

Для них характерно: экран имеет малые физические размеры, не мерцает, полностью отсутствует рентгеновское излучение. Мониторы этого вида допускают локальное стирание и замену информации, имеют малый вес и незначительное потребление энергии, большую механическую прочность и длительный срок службы. Плоские экраны уступают мониторам на электронно-лучевых трубках в скорости обновления информации на экране (они медленнодействующие, не приспособлены для демонстрации динамично меняющихся изображений) и в количестве отображаемых цветовых оттенков.

Плазменные и электролюминесцентные мониторы являются активными, излучающими свет. Для работы с ними не нужен посторонний источник света.

Жидкокристаллические - пассивные мониторы. Они работают только при наличии постороннего источника света и способны работать либо в отраженном, либо в проходящем свете. Жидкокристаллические мониторы используют способность жидких кристаллов изменять свою оптическую плотность или отражающую способность под воздействием электрических сигналов.

В 70-х годах ХХ столетия компанией Radio corporation of America был впервые представлен жидкокристаллический монохромный экран. Эффект жидкокристаллических дисплеев начал использоваться в электронных часах, калькуляторах, измерительных приборах. Потом стали появляться матричные дисплеи, воспроизводящие черно-белое изображение. В 1987 году компания Sharp разработала первый цветной жидкокристаллический дисплей диагональю 3 дюйма.

Гигантский скачок в развитии этой технологии произошел с появлением первых ноутбуков. Сначала матрицы были чёрно-белыми, потом цветными, но только «пассивного» типа. Они довольно сносно отображали статические изображения и рабочий стол ноутбука, но при малейшем движении «картинка» превращалась в сплошную мазню — на экране невозможно было что-либо разобрать. Естественно, это ограничивало сферы использования нового типа дисплеев. Дальнейшая эволюция жидкокристаллических матриц привела к созданию нового их типа — «активного». Такие дисплеи уже лучше справлялись с отображением на экране движущихся объектов, и это способствовало появлению стационарных мониторов. В начале ХХI столетия появились первые ЖК-телевизоры. Диагональ их была ещё маленькой — около 15 дюймов.

Важнейшие характеристики ЖК-дисплеев:

  • тип матрицы определяется технологией, по которой изготовлен ЖК-дисплей;
  • разрешение — горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией (ЭЛТ-мониторы также имеют фиксированное количество пикселей, которые также состоят из красных, зеленых и синих точек. Однако из-за особенностей технологии при выводе нестандартного разрешения в интерполяции нет необходимости);
  • размер точки (размер пикселя) — расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;
  • соотношение сторон экрана (пропорциональный формат) — отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.);
  • видимая диагональ — размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали;
  • контрастность — отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;
  • яркость — количество света, излучаемое дисплеем (обычно измеряется в канделах на квадратный метр);
  • время отклика — минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:

    • время буферизации (input lag). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20—50 мс; в отдельных ранних моделях достигало 200 мс;
    • время переключения. Указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас практически во всех мониторах заявленное время переключения составляет 2—6 мс;
  • угол обзора — угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в тех. параметрах своих мониторов углы обзора, такие, к примеру, как: CR 5:1 — 176/176°, CR 10:1 — 170/160°. Аббревиатура CR (англ. contrast ratio) обозначает уровень контрастности при указанных углах обзора относительно перпендикуляра к экрану. При углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже, чем 10:1, при углах обзора 176°/176° — не ниже, чем до значения 5:1.

В плазменной панели элемент изображения образуется в результате газового разряда, который сопровождается излучением света. Конструктивно панель состоит из трех стеклянных пластин, на две из которых нанесены тонкие прозрачные проводники (до 2-4 проводников на 1 мм). На одной пластине проводники расположены горизонтально, на другой - вертикально. Между ними находится третья стеклянная пластина, в которой в местах пересечения проводников имеются сквозные отверстия. Эти отверстия при сборке панели заполняются инертным газом. Вертикально и горизонтально расположенные Проводники образуют координатную сетку; на пересечении проводников находятся элементы изображения - пикселы (от “picture element”). При разрешающей способности 512х512 пиксел такая панель имеет размеры не более 200х200мм и толщину 6-8 мм.

Электролюминесцентные мониторы работают на принципе люминесценции вещества при воздействии на него электрического поля. Люминесцентное вещество распыляется на внутренней поверхности одной из пластин с координатной сеткой. Напряжение на координатные шины подается такое, чтобы на пересечении координатных шин создавалось электрическое поле, достаточное для возбуждения люминофора.

Электронно-лучевая трубка (ЭЛТ) представляет собой электровакуумный прибор в виде стеклянной колбы, дно которой является экраном. В колбе, из которой удален воздух, расположены электроды: электронная пушка (катод с электронагревательным элементом), анод, вертикально и горизонтально отклоняющие пластины и сетка. Снаружи на ЭЛТ установлена фокусирующая система. Внутренняя поверхность экрана покрыта люминофором, который светится при попадании на него потока электронов. Катод, поверхность которого покрыта веществом, легко отдающим электроны при нагревании, является источником электронов. Возле него образуется “электронное облако”, которое под действием электрического поля анода движется в сторону экрана. По мере приближения к аноду электронный поток увеличивает скорость. Фокусирующая система сжимает поток электронов в тонкий пучок, который с помощью отклоняющих пластин направляется в нужную точку экрана. Сетка служит для регулирования плотности электронного потока. Она расположена гораздо ближе к катоду, чем анод. В зоне ее действия поток электронов имеет небольшую скорость, поэтому она оказывает на поток электронов влияние, сопоставимое с влиянием анода. Сетка может создать электрическое поле, которое тормозит электроны, уменьшает их скорость и плотность потока, движущегося в сторону экрана, и даже может полностью “запереть” трубку, не пропустить поток электронов в сторону экрана.

На отклоняющие пластины ЭЛТ подается пилообразное напряжение, которое отклоняет электронный луч и заставляет его пробегать по всей поверхности экрана, строка за строкой. На поверхности экрана появляется развертка, с помощью которой выводится требуемое изображение - в местах экрана, которые должны оставаться темными, трубка запирается и электронный луч не доходит до поверхности экрана.

В зависимости от формы напряжения, подаваемого на отклоняющие пластины, и способа его получения различаются растровая, матричная и векторная развертки. Растровая развертка представляет собой набор сплошных горизонтальных линий, заполняющих весь экран. Она формируется с помощью аналоговых приборов - генераторов пилообразного напряжения, отдельно - для строк и отдельно для кадров. Этот вид развертки применяется в телевидении.

Матричная развертка по внешнему виду похожа на растровую. Но формируется она с помощью цифровых схем (счетчиков), связанных с отклоняющей системой через цифро-аналоговые преобразователи. В этом случае электронный луч на экране перемещается не непрерывно, а скачками - от одного пиксела к другому. Поэтому он не рисует линию, а высвечивает матрицу точек - пиксел. При такой развертке легко перевести луч в любую заданную точку экрана - надо только в счетчики строк и кадров поместить координаты этой точки. Векторная развертка используется для рисования сложных фигур с помощью сплошных линий разной формы. Управление вертикальным и горизонтальным отклонением луча в этом случае осуществляется с помощью функциональных генераторов, каждый из которых настроен на прорисовку определенного графического примитива. Состав графических примитивов, из которых строится изображение, определяется наличием функциональных генераторов. Максимальное количество строк на экране и количество точек в строке образуют разрешающую способность монитора:

  • низкую: 320 х 200 (320 пиксел в строке, 200 строк на экране);
  • стандартную: 640 х 200,640х350 или 640 х 480;
  • высокую: 750 х 348 или 800 х 600;
  • особо четкую: 1024 х 768 или 1024 х 1024.

Разрешающая способность оказывает значительное влияние на качество изображения на экране, но качество изображения зависит и от других характеристик: физических размеров элементов изображения (пиксел, или точек), размеров экрана, частоты развертки, цветовых характеристик и др.

Размер элементов изображения зависит от величины зерен люминофора, напыляемого на экран, которая измеряется в миллиметрах и образует ряд: 0.42; 0.39; 0.31; 0.28; 0.26;... Фактически приведенные цифры характеризуют не диаметр точек люминофора, а расстояние между центрами этих точек.

Размер экрана, имеющего прямоугольную форму, обычно измеряется по диагонали в дюймах (12, 14, 15, 17, 21,...). Для экрана с диагональю 14” длина горизонтальной части экрана составляет около 10”, а вертикальной - около 9”. При длине строки 10” (т.е. 257.5 мм) и размере зерна 0.42 мм, в строке может разместиться 613 пиксел. Поэтому на мониторе с размером экрана 14” и размером зерна 0.42 мм невозможно получить разрешающую способность более 613 пиксел в строке при 535 пикселных строках на экране; монитор может обеспечить лишь стандартную разрешающую способность (не более 640 х 480). При размере зерна 0.28мм на 14” мониторе максимально можно получить разрешающую способность 800 х 600 (зато на 15” мониторе размер зерна 0.28 позволяет обеспечить разрешающую способность 1024 х 768).

Необходимо отметить, что большее по размерам зерно имеет большую инерционность - электронный луч дольше “разжигает” такое зерно, но оно и светится дольше. Поэтому в мониторах с большим размером зерна частота регенерации не должна быть высокой (25-30 кадров в секунду достаточно, чтобы изображение “не мерцало” из-за угасания зерен люминофора). При уменьшении размеров зерна уменьшается и его инерционность. Поэтому регенерацию экрана в мониторах с зерном 0.26 и меньше приходится проводить чаще (75-100 раз в секунду). Для того чтобы вывести 100 раз в секунду кадр, содержащий 1000 пиксел в строке и 1000 строк, необходимо обеспечить частоту строчной развертки %%100 х 1000 х 1000 = 10\, Гц = 100\, Мгц%%; частота кадровой развертки при этом составит %%100 х 1000 = 105 Гц = 0.1 \, Мгц%%.

По длительности хранения информации на экране мониторы делятся на регенерируемые и запоминающие.

В регенерируемых мониторах изображение после однократной прорисовки держится на экране недолго, доли секунды, постепенно угасая. Угасание изображения иногда заметно на глаз - нижние строки могут быть ярче верхних, например. Для поддержания постоянной яркости изображение приходится повторно прорисовывать (регенерировать) 20-25 раз в секунду. А чтобы яркость в различных частях экрана не очень отличалась и для снижения полосы пропускания применяют чересстрочную развертку: при каждой прорисовке сначала рисуются нечетные строки, а затем - четные. Регенерируемые мониторы незаменимы при визуализации быстропротекающих динамических процессов.

В запоминающих мониторахпосле однократной прорисовки изображение держится на экране в течение нескольких часов. Для его стирания приходится подавать на экран специальное стирающее напряжение.

Запоминающие мониторы эффективны там, где выведенное изображение нуждается в длительной обработке, например подвергается редактированию или должно быть воспринято (изучено) оператором.

По способу управления яркостью луча мониторы делятся на цифровые и аналоговые. В цифровых мониторахдля управления яркостью на сетку подаются дискретные сигналы, которые в зависимости от настройки могут полностью запирать трубку (0) или полностью отпирать ее (1), снижать яркость до 1/2 (0) или обеспечивать полную яркость (1) и т.д.

В аналоговых мониторах на сетку подается непрерывный (аналоговый) сигнал, который может плавно изменять яркость от полного запирания до полного отпирания.

По цветности изображения мониторы делятся на монохромные и цветные.

Цветность монитора на ЭЛТ зависит от люминофорного покрытия экрана. В монохромном мониторе на экране распыляется один люминофор, который и определяет цвет экрана: белый, зеленый и др. В цветном мониторе на экран последовательно напыляются три различных люминофора, каждый из которых светится под воздействием электронного пучка своим цветом. В цветных мониторах в качестве основных цветов применяются красный (Red), зеленый (Green) и синий (Blue), в связи с чем они получили название RGB-мониторы. Люминофоры наносятся в виде точек, образующих цветные триады на месте каждого пиксела. В цветных ЭЛТ используются три электронные пушки, каждая из которых может подсвечивать точку только одного цвета. Изменяя интенсивность каждого электронного пучка, можно регулировать яркость точек в цветных триадах. Но точки, из которых состоит пиксел, глазом по отдельности не воспринимаются, так как имеют очень малые размеры и расположены близко друг от друга. Глаз воспринимает их слитно как одну цветную точку, цвет которой зависит от яркости ее компонентов.

В аналоговых мониторах для управления цветом может использоваться одна общая сетка, одновременно воздействующая на все три луча, - такой монитор называется композитным. В нем одновременно с изменением яркости изображения изменяется и цвет. Это один из самых ранних мониторов, в настоящее время для получения цветного изображения не применяется. Самые большие возможности цветообразования - у аналоговых RGB-мониторов с раздельным управлением яркостью трех лучей. В этих мониторах используются три сетки, каждая из которых находится в непосредственной близости от “своей” электронной пушки и управляет интенсивностью только ее луча. Такие мониторы способны воспроизводить на экране сотни тысяч различных цветов.

В цифровых мониторах управление цветом осуществляется раздельно по каждому лучу. При использовании трех сеток (на каждую из которых может подаваться один из двух сигналов: 0 или 1) на экране могут быть воспроизведены 8 цветов: это цифровой RGB-монитор.

Если, кроме трех таких сеток, в мониторе установлена общая сетка, управляющая интенсивностью всех трех лучей сразу (сетка интенсивности - Intensity), то такой монитор называется IRGB- монитором и способен воспроизвести на экране 16 различных цветов.

В третьей разновидности цветных цифровых мониторов для управления цветом каждого луча установлено по две сетки. Поскольку сетки находятся на различном расстоянии от электронной пушки, их влияние на электронный луч различно - одна из сеток может ограничить интенсивность луча на 1/3, другая - на 2/3, вместе они способны полностью отпереть или запереть электронный луч. Такой цифровой монитор называется RGBrgb-монитором, он способен воспроизвести на экране 64 различных цвета.

Внешние устройства ЭВМВидеоадаптеры