Как и методы, конструкторы также могут перегружаться. Это дает возможность конструировать объекты самыми разными способами. В качестве примера рассмотрим следующую программу.
// Продемонстрировать перегрузку конструктора.
using System;
class MyClass {
public int x;
public MyClass() {
Console.WriteLine("В конструкторе MyClass().");
x = 0;
}
public MyClass(int i) {
Console.WriteLine("В конструкторе MyClass(int).");
x = i;
}
public MyClass(double d) {
Console.WriteLine("В конструкторе MyClass(double).");
x = (int)d;
}
public MyClass(int i, int j) {
Console.WriteLine("В конструкторе MyClass(int, int).");
x = i * j;
}
}
class OverloadConsDemo {
static void Main() {
MyClass t1 = new MyClass();
MyClass t2 = new MyClass(88);
MyClass t3 = new MyClass(17.23);
MyClass t4 = new MyClass(2, 4);
Console.WriteLine("t1.x: " + t1.x);
Console.WriteLine("t2.x: " + t2.x);
Console.WriteLine("t3.x: " + t3.x);
Console.WriteLine("t4.x: " + t4.x);
}
}
При выполнении этой программы получается следующий результат.
В конструкторе MyClass().
В конструкторе MyClass(int).
В конструкторе MyClass(double).
В конструкторе MyClass(int, int).
t1.x: 0
t2.x: 88
t3.x: 17
t4.x: 8
В данном примере конструктор MyClass()
перегружается четыре раза, всякий раз конструируя объект по-разному. Подходящий конструктор вызывается каждый раз, исходя из аргументов, указываемых при выполнении оператора new
. Перегрузка конструктора класса предоставляет пользователю этого класса дополнительные преимущества в конструировании объектов.
Одна из самых распространенных причин для перегрузки конструкторов заключается в необходимости предоставить возможность одним объектам инициализировать другие. В качестве примера ниже приведен усовершенствованный вариант разработанного ранее класса Stack
, позволяющий конструировать один стек из другого.
// Класс для хранения символов в стеке.
using System;
class Stack {
// Эти члены класса являются закрытыми,
char[] stck;
// массив, содержащий стек
int tos;
// индекс вершины стека
// Сконструировать пустой объект класса Stack по заданному размеру стека,
public Stack(int size) {
stck = new char[size]; // распределить память для стека
tos = 0;
}
// Сконструировать объект класса Stack из существующего стека,
public Stack(Stack ob) {
// Распределить память для стека.
stck = new char[ob.stck.Length];
// Скопировать элементы в новый стек,
for (int i = 0; i < ob.tos; i++)
stck[i] = ob.stck[i];
// Установить переменную tos для нового стека,
tos = ob.tos;
}
// Поместить символы в стек,
public void Push(char ch) {
if (tos == stck.Length) {
Console.WriteLine(" - Стек заполнен.");
return;
}
stck[tos] = ch;
tos++;
}
// Извлечь символ из стека,
public char Pop() {
if (tos == 0) {
Console.WriteLine(" - Стек пуст.");
return (char)0;
}
tos--;
return stck[tos];
}
// Возвратить значение true, если стек заполнен,
public bool IsFull() {
return tos == stck.Length;
}
// Возвратить значение true, если стек пуст,
public bool IsEmpty() {
return tos == 0;
}
// Возвратить общую емкость стека,
public int Capacity() {
return stck.Length;
}
// Возвратить количество объектов, находящихся в настоящий момент в стеке,
public int GetNum() {
return tos;
}
}
// Продемонстрировать применение класса Stack.
class StackDemo {
static void Main() {
Stack stk1 = new Stack(10);
char ch;
int i;
// Поместить ряд символов в стек stk1.
Console.WriteLine("Поместить символы A-J в стек stk1.");
for (i = 0; !stk1.IsFull(); i++)
stk1.Push((char)('A' + i));
// Создать копию стека stck1.
Stack stk2 = new Stack(stk1);
// Вывести содержимое стека stk1.
Console.Write("Содержимое стека stk1: ");
while (!stk1.IsEmpty()) {
ch = stk1.Pop();
Console.Write(ch);
}
Console.WriteLine();
Console.Write("Содержимое стека stk2: ");
while (!stk2.IsEmpty()) {
ch = stk2.Pop();
Console.Write(ch);
}
Console.WriteLine("\n");
}
}
Результат выполнения этой программы приведен ниже.
Поместить символы A-J в стек stk1.
Содержимое стека stk1: JIHGFEDCBA
Содержимое стека stk2: JIHGFEDCBA
В классе StackDemo
сначала конструируется первый стек (stk1
), заполняемый символами. Затем этот стек используется для конструирования второго стека (stk2
). Это приводит к выполнению следующего конструктора класса Stack
.
// Сконструировать объект класса Stack из существующего стека.
public Stack(Stack ob) {
// Распределить память для стека.
stck = new char[ob.stck.Length];
// Скопировать элементы в новый стек.
for (int i = 0; i < ob.tos; i++)
stck[i] = ob.stck[i];
// Установить переменную tos для нового стека,
tos = ob.tos;
}
В этом конструкторе сначала распределяется достаточный объем памяти для массива, чтобы хранить в нем элементы стека, передаваемого в качестве аргумента ob
. Затем содержимое массива, образующего стек ob
, копируется в новый массив, после чего соответственно устанавливается переменная tos
, содержащая индекс вершины стека. По завершении работы конструктора новый и исходный стеки существуют как отдельные, хотя и одинаковые объекты.
this
.Когда приходится работать с перегружаемыми конструкторами, то иногда очень полезно предоставить возможность одному конструктору вызывать другой. В С# это дается с помощью ключевого слова this
. Ниже приведена общая форма такого вызова.
имя_конструктора(список_параметров1) : this (список_параметров2) {
// ... Тело конструктора, которое может быть пустым.
}
В исходном конструкторе сначала выполняется перегружаемый конструктор, список параметров которого соответствует критерию список_параметров2, а затем все остальные операторы, если таковые имеются в исходном конструкторе. Ниже приведен соответствующий пример.
// Продемонстрировать вызов конструктора с помощью ключевого слова this.
using System;
class XYCoord {
public int x, y;
public XYCoord() : this(0, 0) {
Console.WriteLine("В конструкторе XYCoord()");
}
public XYCoord(XYCoord obj) : this(obj.x, obj.y) {
Console.WriteLine("В конструкторе XYCoord(obj)");
}
public XYCoord(int i, int j) {
Console.WriteLine("В конструкторе XYCoord(int, int)");
x = i;
y = j;
}
}
class OverloadConsDemo {
static void Main() {
XYCoord t1 = new XYCoord();
XYCoord t2 = new XYCoord(8, 9);
XYCoord t3 = new XYCoord(t2);
Console.WriteLine("tl.x, t1.y: " + t1.x + ", " + t1.y);
Console.WriteLine("t2.x, t2.y: " + t2.x + ", " + t2.y);
Console.WriteLine("t3.x, t3.y: " + t3.x + ", " + t3.y);
}
}
Выполнение этого кода приводит к следующему результату.
В конструкторе XYCoord(int, int)
В конструкторе XYCoord()
В конструкторе XYCoord(int, int)
В конструкторе XYCoord(int, int)
В конструкторе XYCoord(obj)
tl.x, t1.y: 0, 0
t2.x, t2.y: 8, 9
t3.x, t3.y: 8, 9
Код в приведенном выше примере работает следующим образом. Единственным конструктором, фактически инициализирующим поля x
и y
в классе XYCoord
, является конструктор XYCoord(int, int)
. А два других конструктора просто вызывают этот конструктор с помощью ключевого слова this
. Например, когда создается объект t1
, то вызывается его конструктор XYCoord()
, что приводит к вызову this(0, 0)
, который в данном случае преобразуется в вызов конструктора XYCoord(0, 0)
. То же самое происходит и при создании объекта t2
.
Вызывать перегружаемый конструктор с помощью ключевого слова this
полезно, в частности, потому, что он позволяет исключить ненужное дублирование кода. В приведенном выше примере нет никакой необходимости дублировать во всех трех конструкторах одну и ту же последовательность инициализации, и благодаря применению ключевого слова this
такое дублирование исключается. Другое преимущество организации подобного вызова перезагружаемого конструктора заключается в возможности создавать конструкторы с задаваемыми “по умолчанию” аргументами, когда эти аргументы не указаны явно. Ниже приведен пример создания еще одного конструктора XYCoord
.
public XYCoord(int x) : this(x, x) { }
По умолчанию в этом конструкторе для координаты y
автоматически устанавливается то же значение, что и для координаты y
. Конечно, пользоваться такими конструкциями с задаваемыми «по умолчанию» аргументами следует благоразумно и осторожно, чтобы не ввести в заблуждение пользователей классов.
Перегрузка методов | Инициализаторы объектов |