Под симметрией понимают однородность, пропорциональность, гармонию каких-то материальных объектов. Асимметрия – понятие противоположное. Любой физический объект содержит элементы симметрии и асимметрии. Рассмотрим симметрии в физике, химии и биологии.
В физике симметрия определяется следующим образом: если физические законы не меняются при определенных преобразованиях, которым может быть подвергнута система (физический объект), то считается, что эти законы обладают симметрией (или инвариантны) относительно этих преобразований.
Симметрии делят на пространственно-временные и внутренние, последние относятся только к микромиру.
Среди пространственно-временных рассмотрим основные.
В химии симметрии проявляются в геометрической конфигурации молекул. Это определяет как химические, так и физические свойства молекул. Большинство простых молекул имеют оси симметрии, плоскости симметрии.
Например, молекула аммиака NH3 представляет собой правильную треугольную пирамиду, молекула метана %%CH_4%% – правильный тетраэдр. Представления о симметрии весьма полезны при теоретическом анализе строения комплексных соединений, их свойств и поведения.
В биологии симметрии давно изучаются специалистами. Наибольший интерес представляет структурная симметрия биообъектов. Она проявляется в виде того или иного закономерного повторения. На низших этапах развития живой природы встречаются представители всех классов точечной симметрии (правильные многогранники, шары). На более высоких ступенях эволюции встречаются растения и животные в основном с аксиальной и актиноморфной симметрией. Биообъекты с аксиальной симметрией характеризуются осью симметрии (медуза, цветок флокса), а с актиноморфной – осью симметрии и пересекающимися на этой оси плоскостями (например, бабочка с двусторонней симметрией).
Широко известна симметрия кристаллов. Это свойство кристаллов как бы совмещаться с собой в различных положениях путем поворотов, отражений, параллельных переносов. Симметрия внешней формы кристаллов определяется симметрией их атомного строения. Все это связано с симметрией физических свойств кристаллов.
В 1918 г. немецкий математик Эмми Нетер доказала фундаментальную теорему, устанавливающую связь между свойствами симметрии и законами сохранения. Суть теоремы в том, что непрерывными преобразованиями в пространстве-времени, оставляющими инвариантным действие, являются: сдвиг во времени, сдвиг в пространстве, трехмерное пространственное вращение, четырехмерные вращения в пространстве-времени. Согласно теореме Нетер, из инвариантности относительно сдвига во времени следует закон сохранения энергии; из инвариантности относительно пространственных сдвигов – закон сохранения импульса; из инвариантности относительно пространственного вращения – закон сохранения момента импульса; инвариантность относительно преобразований Лоренца (четырехмерные вращения в пространстве-времени) – обобщенный закон движения центра масс: центр масс релятивистской системы движется равномерно и прямолинейно. Теорема Нетер относится не только к пространственно-временным симметриям, но и к внутренним. Например, при всех превращениях элементарных частиц сумма электрических зарядов частиц сохраняется неизменной.
Закон сохранения заряда в макросистемах был подтвержден экспериментальным путем задолго до Нетер, в 1843 г. М. Фарадеем. Строгого научного объяснения причин выполнения закона сохранения заряда пока нет.
Принцип дополнительности является основополагающим в современной физике.
Понятие дополнительности было введено в науку Н. Бором в 1928 г. Это было время становления квантовой механики. Трудно переоценить значение принципа дополнительности для развития наших представлений о мире и познания различных закономерностей. Мы практически всегда оперируем принципом дополнительности. Так, для характеристики многих физических процессов используется одновременно две величины. Например, при оценке движения материальной точки – координата точки и ее скорость. Одна величина как бы дополняет другую. Это характерно практически для любых движущихся материальных объектов. Так работает на практике принцип дополнительности.
Особенно ярко принцип дополнительности выступает в микромире. Все микрочастицы имеют дуалистическую корпускулярно-волновую природу. Инструментальные способы позволили обнаружить эту двойственность микрочастиц сначала у фотона, затем у электрона и других микрочастиц. Любое устройство для детектирования микрочастиц регистрирует их как нечто целое, локализованное в весьма малой области пространства. С другой стороны, можно наблюдать дифракцию и интерференцию этих же микрочастиц на кристаллических решетках или искусственно созданных препятствиях при их движении, то есть микрочастицы обладают выраженными волновыми свойствами.
Однако при оценке явлений окружающего нас мира мы находимся в плену наших макроскопических представлений. Поэтому наблюдатель, оценивая микропроцессы, должен, принимая без сомнения микрочастицы как локализованные объекты (частицы или корпускулы), одновременно «домысливать» их волновые свойства. Наблюдатель должен применять два дополняющих друг друга понятия. Только в совокупности этих двух наборов понятий информация о микропроцессах будет достоверной.
Таким образом, одна характеристика способна отразить только часть истины, а собрав противоречащие друг другу характеристики одного объекта, можно получить полную картину этого объекта. В общей форме принцип дополнительности можно сформулировать так:
В области квантовых явлений наиболее общие физические свойства какой-либо системы должны быть выражены с помощью дополняющих друг друга пар независимых переменных, каждая из которых может быть лучше определена только за счет соответствующего уменьшения степени определенности другой.
Принцип неопределенности является фундаментальным законом микромира. Его можно считать частным выражением принципа дополнительности.
В классической механике частица движется по определенной траектории, и в любой момент времени возможно точно определить ее координаты и ее импульс. Относительно микрочастицы такое представление неправомерно. Микрочастица не имеет четко выраженной траектории, она обладает и свойствами частицы, и свойствами волны (корпускулярно-волновой дуализм). В этом случае понятие «длина волны в данной точке» не имеет физического смысла, а поскольку импульс микрочастицы выражается через длину волны – p = к/л, то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату, и наоборот.
В. Гейзенберг (1927 г.), учитывая двойственную природу микрочастиц, пришел к выводу, что невозможно одновременно с любой наперед заданной точностью характеризовать микрочастицу и координатами, и импульсом.
Соотношениями неопределенностей Гейзенберга называются неравенства:
$$Δx · Δp_x ≥ h, Δy · Δp_y ≥ h, Δz · Δp_z ≥ h$$
Здесь %%Δx, Δy, Δz%% означают интервалы координат, в которых может быть локализована микрочастица (эти интервалы и есть неопределенности координат), %%Δp_x, Δp_y, Δp_z%% означают интервалы проекций импульса на координатные оси %%x, y, z%%; %%h%% – постоянная Планка. Согласно принципу неопределенностей, чем точнее фиксируется импульс, тем значительнее будет неопределенность по координате, и наоборот.
По мере развития науки, углубления накопленных знаний новые теории становятся более точными. Новые теории охватывают все более широкие горизонты материального мира и проникают в ранее неизведанные глубины. Динамические теории сменяются статическими.
Каждая фундаментальная теория имеет определенные границы применимости. Поэтому появление новой теории не означает полного отрицания старой. Так, движение тел в макромире со скоростями значительно меньшими, чем скорость света, всегда будет описываться классической механикой Ньютона. Однако при скоростях, соизмеримых со скоростью света (релятивистских скоростях), механика Ньютона неприменима.
Объективно имеет место преемственность фундаментальных физических теорий. Это и есть принцип соответствия, который можно сформулировать следующим образом:
никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.
Законы сохранения | Понятие о состоянии системы. Лапласовский детерминизм |